索引膨胀的几个来源:
1 大量删除发生后,导致索引页面稀疏,降低了索引使用效率。
2 PostgresQL 9.0之前的版本,vacuum full 会同样导致索引页面稀疏。
3 长时间运行的事务,禁止vacuum对表的清理工作,因而导致页面稀疏状态一直保持。
查看重复索引
SELECT pg_size_pretty(SUM(pg_relation_size(idx))::BIGINT) AS SIZE, (array_agg(idx))[1] AS idx1, (array_agg(idx))[2] AS idx2, (array_agg(idx))[3] AS idx3, (array_agg(idx))[4] AS idx4 FROM ( SELECT indexrelid::regclass AS idx, (indrelid::text ||E'\n'|| indclass::text ||E'\n'|| indkey::text ||E'\n'|| COALESCE(indexprs::text,'')||E'\n' || COALESCE(indpred::text,'')) AS KEY FROM pg_index) sub GROUP BY KEY HAVING COUNT(*)>1 ORDER BY SUM(pg_relation_size(idx)) DESC;
表的大小和表中索引个数
SELECT t.tablename, indexname, c.reltuples AS num_rows, pg_size_pretty(pg_relation_size(quote_ident(t.tablename)::text)) AS table_size, pg_size_pretty(pg_relation_size(quote_ident(indexrelname)::text)) AS index_size, CASE WHEN indisunique THEN 'Y' ELSE 'N' END AS UNIQUE, idx_scan AS number_of_scans, idx_tup_read AS tuples_read, idx_tup_fetch AS tuples_fetched FROM pg_tables t LEFT OUTER JOIN pg_class c ON t.tablename=c.relname LEFT OUTER JOIN ( SELECT c.relname AS ctablename, ipg.relname AS indexname, x.indnatts AS number_of_columns, idx_scan, idx_tup_read, idx_tup_fetch, indexrelname, indisunique FROM pg_index x JOIN pg_class c ON c.oid = x.indrelid JOIN pg_class ipg ON ipg.oid = x.indexrelid JOIN pg_stat_all_indexes psai ON x.indexrelid = psai.indexrelid ) AS foo ON t.tablename = foo.ctablename WHERE t.schemaname='public' ORDER BY 1,2;
获取每个表的行数,索引和一些关于这些索引的信息(比较详细)
SELECT pg_class.relname, pg_size_pretty(pg_class.reltuples::BIGINT) AS rows_in_bytes, pg_class.reltuples AS num_rows, COUNT(indexname) AS number_of_indexes, CASE WHEN x.is_unique = 1 THEN 'Y' ELSE 'N' END AS UNIQUE, SUM(CASE WHEN number_of_columns = 1 THEN 1 ELSE 0 END) AS single_column, SUM(CASE WHEN number_of_columns IS NULL THEN 0 WHEN number_of_columns = 1 THEN 0 ELSE 1 END) AS multi_column FROM pg_namespace LEFT OUTER JOIN pg_class ON pg_namespace.oid = pg_class.relnamespace LEFT OUTER JOIN (SELECT indrelid, MAX(CAST(indisunique AS INTEGER)) AS is_unique FROM pg_index GROUP BY indrelid) x ON pg_class.oid = x.indrelid LEFT OUTER JOIN ( SELECT c.relname AS ctablename, ipg.relname AS indexname, x.indnatts AS number_of_columns FROM pg_index x JOIN pg_class c ON c.oid = x.indrelid JOIN pg_class ipg ON ipg.oid = x.indexrelid ) AS foo ON pg_class.relname = foo.ctablename WHERE pg_namespace.nspname='public' AND pg_class.relkind = 'r' GROUP BY pg_class.relname, pg_class.reltuples, x.is_unique ORDER BY 2;
补充:postgresql查看表膨胀
查看表膨胀(对所有表产进行膨胀率排序)
SQL文如下:
SELECT schemaname||'.'||relname as table_name, pg_size_pretty(pg_relation_size(schemaname||'.'||relname)) as table_size, n_dead_tup, n_live_tup, round(n_dead_tup * 100 / (n_live_tup + n_dead_tup),2) AS dead_tup_ratio FROM pg_stat_all_tables WHERE n_dead_tup >= 1000 ORDER BY dead_tup_ratio DESC LIMIT 10;
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
暂无评论...
更新日志
2024年12月23日
2024年12月23日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]